Understanding the thermochemical behavior of La0.6Sr0.4Co0.2Fe0.8O3 and Ce0.9Gd0.1O_Co oxygen transport membranes under real oxy-combustion process conditions
Description
Oxygen transport membranes (OTM) are a promising alternative to conventional systems of air separation based on cryogenic distillation for oxy-fuel combustion power plants. In this work, a systematic study of the thermochemical stability of La0.6Sr0.4Co0.2Fe0.8O3 (perovskite-type) and cobalt doped Ce0.9Gd0.1O (fluorite-type) is proposed. The experiments were developed in a laboratory scale facility, which is able to mimic realistic oxy-fuel combustion flue gas containing SOx, NOx, H2O and CO2. In order to understand the thermochemical behavior of this type of materials, a full characterization analysis of the tested samples using a wide portfolio of analytical techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), infrared spectroscopy (ATR-FTIR), Raman spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) and Brunauer−Emmett−Teller analysis (BET) has been carefully discussed. Our data revealed the superior stability of the CGO samples in comparison with the LSCF at all the test conditions studied in this work. The formation of crystalline and amorphous sulphates and carbonates are evident for the LSCF while for the CGO samples do not react with SOX and barely form carbonates. The presence of silicon species – typically ignored in academic works – has been detected, pointing its relevance for real applications.
Abstract
Engineering & Physical Sciences Research Council EP/R512904/1
Abstract
Royal Society (UK) RSGR1180353
Additional details
- URL
- https://idus.us.es/handle//11441/163190
- URN
- urn:oai:idus.us.es:11441/163190
- Origin repository
- USE