Published February 13, 2023 | Version v1
Publication

How ornithopters can perch autonomously on a branch

Description

Flapping wings produce lift and thrust in bio-inspired aerial robots, leading to quiet, safe and efficient flight. However, to extend their application scope, these robots must perch and land, a feat widely demonstrated by birds. Despite recent progress, flapping-wing vehicles, or ornithopters, are to this day unable to stop their flight. In this paper, we present a process to autonomously land an ornithopter on a branch. This method describes the joint operation of a pitch-yaw-altitude flapping flight controller, an optical close-range correction system and a bistable claw appendage design that can grasp a branch within 25 milliseconds and re-open. We validate this method with a 700 g robot and demonstrate the first autonomous perching flight of a flapping-wing robot on a branch, a result replicated with a second robot. This work paves the way towards the application of flapping-wing robots for long-range missions, bird observation, manipulation, and outdoor flight.

Abstract

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

Additional details

Created:
February 22, 2023
Modified:
December 1, 2023