Published September 20, 2018
| Version v1
Conference paper
Dmipy, a Diffusion Microstructure Imaging toolbox in Python to improve research reproducibility
Contributors
Others:
- Computational Imaging of the Central Nervous System (ATHENA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Modelling brain structure, function and variability based on high-field MRI data (PARIETAL) ; Service NEUROSPIN (NEUROSPIN) ; Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- ANR-13-MONU-0009,MOSIFAH,Modélisation et simulation multimodales et multiéchelles de l'architecture des fibres myocardiques du cœur humain(2013)
- European Project: 694665,H2020 ERC,ERC-2015-AdG,CoBCoM(2016)
Description
Non-invasive estimation of brain white matter microstructure features using diffusion MRI - otherwise known as Microstructure Imaging - has become an increasingly diverse and complicated field over the last decade. Multi-compartment-based models have been a popular approach to estimate these features. In this work, we present Diffusion Microstructure Imaging in Python (Dmipy), a diffusion MRI toolbox which allows accessing any multi-compartment-based model and robustly estimates these important features from single-shell, multi-shell, and multi-diffusion time, and multi-TE data. Dmipy follows a building block-based philosophy to microstructure imaging, meaning a multi-compartment model can be constructed and fitted to dMRI data using any combination of underlying tissue models, axon dispersion-or diameter distributions, and optimization algorithms using less than 10 lines of code, thus helps improve research reproducibility. In describing the toolbox, we show how Dmipy enables to easily design microstructure models and offers to the users the freedom to choose among different optimization strategies.We finally present three advanced examples of highly complex modeling approaches which are made easy using Dmipy.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01873353
- URN
- urn:oai:HAL:hal-01873353v1
Origin repository
- Origin repository
- UNICA