Published June 28, 2009 | Version v1
Journal article

Connected Graph Searching in Chordal Graphs

Nisse, Nicolas
Other:
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

Graph searching was introduced by Parson [T. Parson, Pursuit-evasion in a graph, in: Theory and Applications of Graphs, in: Lecture Notes in Mathematics, Springer-Verlag, 1976, pp. 426--441]: given a "contaminated†graph G (e.g., a network containing a hostile intruder), the search number View the MathML source of the graph G is the minimum number of searchers needed to "clear†the graph (or to capture the intruder). A search strategy is connected if, at every step of the strategy, the set of cleared edges induces a connected subgraph. The connected search number View the MathML source of a graph G is the minimum k such that there exists a connected search strategy for the graph G using at most k searchers. This paper is concerned with the ratio between the connected search number and the search number. We prove that, for any chordal graph G of treewidth View the MathML source, View the MathML source. More precisely, we propose a polynomial-time algorithm that, given any chordal graph G, computes a connected search strategy for G using at most View the MathML source searchers. Our main tool is the notion of connected tree-decomposition. We show that, for any connected graph G of chordality k, there exists a connected search strategy using at most View the MathML source searchers where T is an optimal tree-decomposition of G.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023