Published 2008
| Version v1
Journal article
Parameterization of a process-based tree-growth model: comparison of optimization, MCMC and particle filtering algorithms
Contributors
Others:
- Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Water Resource Modeling (MERE) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)
- Department of Environmental Science, Policy, and Management [Berkeley] (ESPM) ; University of California [Berkeley] (UC Berkeley) ; University of California (UC)-University of California (UC)
- Département des Sciences et Gestion de l'Environnement [Liege] (DSGE) ; Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)
Description
Finely tuned process-based tree-growth models are of considerable help in understanding the variations of biomass increments measured in the dendrochronological series. Using site and species parameters, as well as daily climate variables, the MAIDEN model computes the water balance at ecosystem level and the daily increment of carbon storage in the stem through photosynthesis processes to reproduce the structure of the tree-ring series. In this paper, we use three techniques to calibrate this model with Pinus halepensis data sampled in the Mediterranean part of France: a standard optimization (PEST), Monte Carlo Markov Chains (MCMC) and Particle Filtering (PF). Contrary to PEST which tries to find an optimum fit (giving the lowest error between observations and simulations), the principle of MCMC and PF is to walk, from a prior! distributions, in the parameter space according to particular statistical rules to compute each parameter distribution. The PEST and MCMC calibrations of our dendrochronological series lead to rather similar adjustments between simulations and observations. PF and MCMC calibrations give different parameter distributions, showing how complementary are these methods, with a better fit for MCMC. Yet, independent validations over 11 independent meteorological years show a higher efficiency of the recent PF method over the others.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/inria-00506344
- URN
- urn:oai:HAL:inria-00506344v1
Origin repository
- Origin repository
- UNICA