Published November 6, 2023
| Version v1
Conference paper
On the Automatic Assessment of Natural Language Expert Explanations in Medicine
Contributors
Others:
- Université Côte d'Azur (UCA)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Centre National de la Recherche Scientifique (CNRS)
- Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
The importance of explanations in decision-making, particularly in the medical domain, has been widely recognized. However, the evaluation of the quality of these explanations remains a challenging task. In this work, we propose a novel approach for assessing and evaluating the reasons provided in explanations about clinical cases. Our approach leverages an external knowledge base and a defined prevalence function to score each reason based on its pertinence in the domain. By applying a deterministic prevalence function, we ensure total transparency of the reasons' assessment, facilitating a precise explanation of the rationale behind the scoring hierarchy of each reason. We demonstrate the effectiveness of our approach in clinical cases, where medical experts explain the rationale behind a specific diagnosis and why other potential diagnoses are dismissed. Our methodology provides a nuanced and detailed evaluation of the explanation, contributing to a more comprehensive understanding of the decision-making process.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-04371254
- URN
- urn:oai:HAL:hal-04371254v1
Origin repository
- Origin repository
- UNICA