Published 2016
| Version v1
Book section
High-Dimensional Topological Data Analysis
Creators
Contributors
Others:
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- ANR-13-BS01-0008,TopData,Analyse Topologique des Données : Méthodes Statistiques et Estimation(2013)
- European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014)
Description
Modern data often come as point clouds embedded in high dimensional Euclidean spaces, or possibly more general metric spaces. They are usually not distributed uniformly, but lie around some highly nonlinear geometric structures with nontrivial topology. Topological data analysis (TDA) is an emerging field whose goal is to provide mathematical and algorithmic tools to understand the topological and geometric structure of data. This chapter provides a short introduction to this new field through a few selected topics. The focus is deliberately put on the mathematical foundations rather than specific applications, with a particular attention to stability results asserting the relevance of the topological information inferred from data.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01316989
- URN
- urn:oai:HAL:hal-01316989v1
Origin repository
- Origin repository
- UNICA