Deep learning facilitates distinguishing histologic subtypes of pulmonary neuroendocrine tumors on digital whole-slide images
- Creators
- Ilie, Marius
- Benzaquen, Jonathan
- Tourniaire, Paul
- Heeke, Simon
- Ayache, Nicholas
- Delingette, Hervé
- Long-Mira, Elodie
- Lassalle, Sandra
- Hamila, Marame
- Fayada, Julien
- Otto, Josiane
- Cohen, Charlotte
- Gomez Caro, Abel
- Berthet, Jean Philippe
- Marquette, Charles Hugo
- Hofman, Véronique
- Bontoux, Christophe
- Hofman, Paul
- Others:
- FHU OncoAge - Pathologies liées à l'âge [CHU Nice] (OncoAge) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Pharmacologie Moléculaire et Cellulaire [UNIV Côte d'Azur] (UPMC)-Université Côte d'Azur (UCA)
- Institut de Recherche sur le Cancer et le Vieillissement (IRCAN) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Université Côte d'Azur (UCA)
- Laboratoire de Pathologie Clinique et Expérimentale. Hôpital Pasteur [Nice] ; Hôpital Pasteur [Nice] (CHU)
- Département Oncologie Médicale [Nice] ; Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL) ; UNICANCER-Université Côte d'Azur (UCA)-UNICANCER-Université Côte d'Azur (UCA)
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- The University of Texas M.D. Anderson Cancer Center [Houston]
- Centre de Lutte contre le Cancer Antoine Lacassagne [Nice] (UNICANCER/CAL) ; UNICANCER-Université Côte d'Azur (UCA)
- Centre Hospitalier Universitaire de Nice (CHU Nice)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Description
The histological distinction of lung neuroendocrine carcinoma, including small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC) and atypical carcinoid (AC), can be challenging in some cases, while bearing prognostic and therapeutic significance. To assist pathologists with the differentiation of histologic subtyping, we applied a deep learning classifier equipped with a convolutional neural network (CNN) to recognize lung neuroendocrine neoplasms. Slides of primary lung SCLC, LCNEC and AC were obtained from the Laboratory of Clinical and Experimental Pathology (University Hospital Nice, France). Three thoracic pathologists blindly established gold standard diagnoses. The HALO-AI module (Indica Labs, UK) trained with 18,752 image tiles extracted from 60 slides (SCLC = 20, LCNEC = 20, AC = 20 cases) was then tested on 90 slides (SCLC = 26, LCNEC = 22, AC = 13 and combined SCLC with LCNEC = 4 cases; NSCLC = 25 cases) by F1-score and accuracy. A HALO-AI correct area distribution (AD) cutoff of 50% or more was required to credit the CNN with the correct diagnosis. The tumor maps were false colored and displayed side by side to original hematoxylin and eosin slides with superimposed pathologist annotations. The trained HALO-AI yielded a mean F1-score of 0.99 (95% CI, 0.939–0.999) on the testing set. Our CNN model, providing further larger validation, has the potential to work side by side with the pathologist to accurately differentiate between the different lung neuroendocrine carcinoma in challenging cases.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03621585
- URN
- urn:oai:HAL:hal-03621585v1
- Origin repository
- UNICA