Published June 19, 2017
| Version v1
Journal article
Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity.
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Mathématiques de Toulouse UMR5219 (IMT) ; Université Toulouse 1 Capitole (UT1) ; Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) ; Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- ANR-09-JCJC-0095,ArDyPitEq(2009)
Description
We present two constraint minimization approaches to prove the existence of traveling waves for a wide class of nonlinear Schrödinger equations with nonvanishing conditions at infinity in space dimension N ≥ 2. Minimization of the energy at fixed momentum can be used whenever the associated potential function is positive on the natural function space and it gives a set of orbitally stable traveling waves. Minimization of the action at constant kinetic energy can be used in all cases, but gives no information on the orbital stability of the set of solutions.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00874602
- URN
- urn:oai:HAL:hal-00874602v1