Published 2017 | Version v1
Publication

A toolbox for dynamic and connectivity CP analysis of neuronal spike trains data

Description

Thanks to recent improvements in the neurotechnology, parallel recordings with an ever-increasing number of micro-transducers are now available to monitor the neuronal spiking activity CP of large-scale neuronal networks. At the same time, continuous improvements are required to develop computationally efficient software for processing and analyzing such huge amounts of data. In this work, we present a new tool named SPICODYN, as a possible solution to efficiently process and analyze big-data coming from in vitro multi-site recordings. By adopting the standardized HDF5 raw input data format it offers independency from the specific acquisition setup. SPICODYN allows performing pre-processing operations (spike detection), full dynamics and functional-effective connectivity CP analysis on the generated spike trains, and topological characterization related to the estimated connectivity CP.

Additional details

Identifiers

URL
http://hdl.handle.net/11567/884212
URN
urn:oai:iris.unige.it:11567/884212

Origin repository

Origin repository
UNIGE