Published 2017
| Version v1
Publication
A toolbox for dynamic and connectivity CP analysis of neuronal spike trains data
Contributors
Description
Thanks to recent improvements in the neurotechnology, parallel recordings with an ever-increasing number of micro-transducers are now available to monitor the neuronal spiking activity CP of large-scale neuronal networks. At the same time, continuous improvements are required to develop computationally efficient software for processing and analyzing such huge amounts of data. In this work, we present a new tool named SPICODYN, as a possible solution to efficiently process and analyze big-data coming from in vitro multi-site recordings. By adopting the standardized HDF5 raw input data format it offers independency from the specific acquisition setup. SPICODYN allows performing pre-processing operations (spike detection), full dynamics and functional-effective connectivity CP analysis on the generated spike trains, and topological characterization related to the estimated connectivity CP.
Additional details
Identifiers
- URL
- http://hdl.handle.net/11567/884212
- URN
- urn:oai:iris.unige.it:11567/884212
Origin repository
- Origin repository
- UNIGE