Published March 25, 2012 | Version v1
Conference paper

Alpha-divergence maximization for statistical region based active contour segmentation with non-parametric PDF estimations

Others:
ICI ; Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051) ; Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe KEIA ; Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
IEEE

Description

In this article, a complete original framework for non supervised statistical region based active contour segmentation is proposed. More precisely, the method is based on the maximization of alphadivergences between non paramterically estimated probability density functions (PDF) of the inner and outer regions defined by the evolving curve. In this paper, we define the variational context associated to distance maximization in the particular case of alphadivergence and we also provide the complete derivation of the partial differential equation leading the segmentation. Results on synthetic data (corrupted with a high level of Gaussian and Poisonian noises) but also on clinical images (X-ray images) show that the proposed non supervised approach improves classical approach of that kind.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 17, 2023