Finding good 2-partitions of digraphs II. Enumerable properties
- Others:
- Department of Mathematics and Computer Science [Odense] (IMADA) ; University of Southern Denmark (SDU)
- Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We continue the study, initiated in [3], of the complexity of deciding whether a given digraph D has a vertex-partition into two disjoint subdigraphs with given structural properties and given minimum cardinality. Let EE be the following set of properties of digraphs: E=E={strongly connected, connected, minimum out-degree at least 1, minimum in-degree at least 1, minimum semi-degree at least 1, minimum degree at least 1, having an out-branching, having an in-branching}. In this paper we determine, for all choices of P1,P2P1,P2 from EE and all pairs of fixed positive integers k1,k2k1,k2, the complexity of deciding whether a digraph has a vertex partition into two digraphs D1,D2D1,D2 such that DiDi has property PiPi and |V(Di)|≥ki|V(Di)|≥ki, i=1,2i=1,2. We also classify the complexity of the same problems when restricted to strongly connected digraphs. The complexity of the analogous problems when P1∈HP1∈H and P2∈H∪EP2∈H∪E, where H=H={acyclic, complete, arc-less, oriented (no 2-cycle), semicomplete, symmetric, tournament} were completely characterized in [3].
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01346079
- URN
- urn:oai:HAL:hal-01346079v1
- Origin repository
- UNICA