Published 2009
| Version v1
Report
The Effect of Noise on the Number of Extreme Points
Contributors
Others:
- GIPSA - Géométrie, Perception, Images, Geste (GIPSA-GPIG) ; Département Images et Signal (GIPSA-DIS) ; Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Effective Geometric Algorithms for Surfaces and Visibility (VEGAS) ; INRIA Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- INRIA
- ANR-07-BLAN-0319,Triangles,New challenges in triangulations(2007)
Description
Assume that Y is a noisy version of a point set X in convex position. How many vertices does the convex hull of Y have, that is, what is the number of extreme points of Y? We consider the case where X is an (epsilon,kappa)-sample of a sphere in Rd and the noise is random and uniform: Y is obtained by replacing each point x in X by a point chosen uniformly at random in some region R(x) of size delta around x. We give upper and lower bounds on the expected number of extreme points in Y when R(x) is a ball (in arbitrary dimension) or an axis-parallel square (in the plane). Our bounds depend on the size n of X and $\delta$, and are tight up to a polylogarithmic factor. These results naturally extend in various directions (more general point sets, other regions R(x)...). We also present experimental results, showing that our bounds for random noise provide good estimators of the behavior of snap-rounding, that is when Y is obtained by rounding each point of X to the nearest point on a grid of step delta.
Additional details
Identifiers
- URL
- https://inria.hal.science/inria-00438409
- URN
- urn:oai:HAL:inria-00438409v1
Origin repository
- Origin repository
- UNICA