Published 2016 | Version v1
Journal article

The complexity of finding arc-disjoint branching flows

Others:
Department of Mathematics and Computer Science [Odense] (IMADA) ; University of Southern Denmark (SDU)
Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Singapore University of Technology and Design (SUTD)
ANR-13-BS02-0007,Stint,Structures Interdites(2013)

Description

The concept of arc-disjoint flows in networks was recently introduced in Bang-Jensen and Bessy (2014). This is a very general framework within which many well-known and important problems can be formulated. In particular, the existence of arc-disjoint branching flows, that is, flows which send one unit of flow from a given source s to all other vertices, generalizes the concept of arc-disjoint out-branchings (spanning out-trees) in a digraph. A pair of out-branchings B + s,1 , B + s,2 from a root s in a digraph D = (V , A) on n vertices corresponds to arc-disjoint branching flows x 1 , x 2 (the arcs carrying flow in x i are those used in B + s,i , i = 1, 2) in the network that we obtain from D by giving all arcs capacity n − 1. It is then a natural question to ask how much we can lower the capacities on the arcs and still have, say, two arc-disjoint branching flows from the given root s. We prove that for every fixed integer k ≥ 2 it is • an NP-complete problem to decide whether a network N = (V , A, u) where u ij = k for every arc ij has two arc-disjoint branching flows rooted at s. • a polynomial problem to decide whether a network N = (V , A, u) on n vertices and u ij = n − k for every arc ij has two arc-disjoint branching flows rooted at s. The algorithm for the later result generalizes the polynomial algorithm, due to Lovász, for deciding whether a given input digraph has two arc-disjoint out-branchings rooted at a given vertex. Finally we prove that under the so-called Exponential Time Hypothesis (ETH), for every ϵ > 0 and for every k(n) with (log(n)) 1+ϵ ≤ k(n) ≤ n 2 (and for every large i we have k(n) = i for some n) there is no polynomial algorithm for deciding whether a given digraph contains two arc-disjoint branching flows from the same root so that no arc carries flow larger than n − k(n).

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
December 1, 2023