Published January 7, 2008
| Version v1
Publication
Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq equations
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut Wolfgang Döblin (IWD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR OTARIE project (ANR BLAN07-2-183172)
- CNRS Universite de Nice
- FR 2800 Wolfgang Doeblin
Description
We establish a connection between Optimal Transport Theory and classical Convection Theory for geophysical flows. Our starting point is the model designed few years ago by Angenent, Haker and Tannenbaum to solve some Optimal Transport problems. This model can be seen as a generalization of the Darcy-Boussinesq equations, which is a degenerate version of the Navier-Stokes-Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized Hydrostatic-Boussinesq equations) to various models involving Optimal Transport (and the related Monge-Ampere equation. This includes the 2D semi-geostrophic equations and some fully non-linear versions of the so-called high-field limit of the Vlasov-Poisson system and of the Keller-Segel for Chemotaxis. Finally, we show how a ``stringy'' generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00202710
- URN
- urn:oai:HAL:hal-00202710v1
Origin repository
- Origin repository
- UNICA