Published March 2004
| Version v1
Report
Improper choosability of graphs and maximum average degree
Creators
Contributors
Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- INRIA
Description
Improper choosability of planar graphs has been widely studied. In particular, Skrekovski investigated the smallest integer $g_k$ such that every planar graph of girth at least $g_k$ is $k$-improper $2$-choosable. He proved that $6\leq g_1\leq 9$; $5\leq g_2\leq 7$; $5\leq g_3\leq 6$ and $\forall k\geq 4, g_k=5$. In this paper, we study the greatest real $M(k,l)$ such that every graph of maximum average degree less than $M(k,l)$ is $k$-improper $l$-choosable. We prove that for $l\geq 2$ then $ M(k,l)\geq l+\frac{lk}{l+k}$. As a corollary, we deduce that $g_1\leq 8$ and $g_2\leq 6$. We also provide an upper bound for $M(k,l)$. This implies that for any fixed $l$, $M(k,l)\xrightarrow[k\rightarrow\infty]{}2l$.
Additional details
Identifiers
- URL
- https://hal.inria.fr/inria-00071425
- URN
- urn:oai:HAL:inria-00071425v1
Origin repository
- Origin repository
- UNICA