Published 2015
| Version v1
Journal article
From Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck Systems to Incompressible Euler Equations: the case with finite charge
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- COmplex Flows For Energy and Environment (COFFEE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Courant Institute of Mathematical Sciences [New York] (CIMS) ; New York University [New York] (NYU) ; NYU System (NYU)-NYU System (NYU)
Description
We study the asymptotic regime of strong electric fields that leads from the Vlasov–Poisson system to the Incompressible Euler equations. We also deal with the Vlasov–Poisson–Fokker– Planck system which induces dissipative effects. The originality consists in considering a situation with a finite total charge confined by a strong external field. In turn, the limiting equation is set in a bounded domain, the shape of which is determined by the external confining potential. The analysis extends to the situation where the limiting density is non–homogeneous and where the Euler equation is replaced by the Lake Equation, also called Anelastic Equation.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01121534
- URN
- urn:oai:HAL:hal-01121534v1
- Origin repository
- UNICA