Published June 4, 2012
| Version v1
Conference paper
Applying Gauss-Newton and Exact Newton method to Full Waveform Inversion
Contributors
Others:
- Equations aux Dérivées Partielles (EDP) ; Laboratoire Jean Kuntzmann (LJK) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
- Ondes et Structures ; Institut des Sciences de la Terre (ISTerre) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Géoazur (GEOAZUR 6526) ; Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Full Waveform Inversion (FWI) applications classically rely on efficient first-order optimization schemes, as the steepest descent or the nonlinear conjugate gradient optimization. However, second-order information provided by the Hessian matrix is proven to give a useful help in the scaling of the FWI problem and in the speed-up of the optimization. In this study, we propose an efficient matrix-free Hessian-vector formalism, that should allow to tackle Gauss-Newton (GN) and Exact-Newton (EN) optimization for large and realistic FWI targets. Our method relies on general second order adjoint formulas, based on a Lagrangian formalism. These formulas yield the possibility of computing Hessian-vector products at the cost of 2 forward simulations per shot. In this context, the computational cost (per shot) of one GN or one EN nonlinear iteration amounts to the resolution of 2 forward simulations for the computation of the gradient plus 2 forward simulations per inner linear conjugate gradient iteration. A numerical test is provided, emphasizing the possible improvement of the resolution when accounting for the exact Hessian in the inversion algorithm.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00944435
- URN
- urn:oai:HAL:hal-00944435v1
Origin repository
- Origin repository
- UNICA