Published September 12, 2010
| Version v1
Conference paper
Lossy compression of plant architectures
Contributors
Others:
- Laboratoire Bordelais de Recherche en Informatique (LaBRI) ; Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
- Pacific Institute for the Mathematical Sciences (PIMS) ; University of Calgary-Centre National de la Recherche Scientifique (CNRS)
- Modeling plant morphogenesis at different scales, from genes to phenotype (VIRTUAL PLANTS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Développement et amélioration des plantes (UMR DAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)
- Département Systèmes Biologiques (Cirad-BIOS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
- ANR-06-BLAN-0045,BRASERO,Biologically Relevant Algorithms and Softwares for Efficient RNA Structure Comparison(2006)
Description
Plants usually show intricate structures whose representation and management are an important source of complexity of models. Yet plant structures are also repetitive: although not identical, the organs, axes, and branches at different positions are often highly similar. From a formal perspective, this repetitive character of plant structures was first exploited in fractal-based plant models (Barnsley, 2000; Ferraro et al., 2005; Prusinkiewicz and Hanan, 1989; Smith, 1984). In particular, L-systems have extensively been used in the last two decades to amplify parsimonious rule-based models into complex branching structures by specifying how fundamental units are repeatedly duplicated and modified in space and over time (Prusinkiewicz et al., 2001). However, the inverse problem of finding a compact representation of a branching structure has remained largely opened, and is now becoming a key issue in modeling applications as it needs to be solved to both get insight into the complex organization of plants and to decrease time and space complexity of simulation algorithms. The idea is that a compressed version of a plant structure might be much more efficient to manipulate than the original extensive branching structure. For instance, Soler et al. (2003) have shown that the complexity of radiation simulation can be drastically reduced if self-similar representations of plants are used. Unfor- tunately, strict self-similarity has a limited range of applications, because neither real plants nor more sophisticated plant models are exactly self-similar. Consequently, we propose in this paper an algorithm that exploit approximate self-similarity to compress plant structures to various degrees, representing a tradeoff between compression rate and accuracy. This new compression method aims at making possible to efficiently model, simulate and analyze plants using these compressed representations.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-00490061
- URN
- urn:oai:HAL:hal-00490061v1
Origin repository
- Origin repository
- UNICA