Published 2022
| Version v1
Journal article
Topological Data Analysis and its usefulness for precision medicine studies
Contributors
Others:
- Institute of Psychiatry, Psychology, and Neuroscience ; King's College London
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- University of Oxford
- The Alan Turing Institute
- Laboratoire de Mathématiques Jean Leray (LMJL) ; Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST) ; Nantes Université - pôle Sciences et technologie ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
Description
Precision medicine allows the extraction of information from complex datasets to facilitate clinical decision-making at the individual level. Topological Data Analysis (TDA) offers promising tools that complement current analytical methods in precision medicine studies. We introduce the fundamental concepts of the TDA corpus (the simplicial complex, the Mapper graph, the persistence diagram and persistence landscape). We show how these can be used to enhance the prediction of clinical outcomes and to identify novel subpopulations of interest, particularly applied to understand remission of depression in data from the GENDEP clinical trial.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-03912322
- URN
- urn:oai:HAL:hal-03912322v1
Origin repository
- Origin repository
- UNICA