Published October 5, 2023 | Version v1
Publication

Schizotypy-Related Magnetization of Cortex in Healthy Adolescence Is Colocated With Expression of Schizophrenia-Related Genes

Description

Background: Genetic risk is thought to drive clinical variation on a spectrum of schizophrenia-like traits, but the underlying changes in brain structure that mechanistically link genomic variation to schizotypal experience and behavior are unclear. Methods: We assessed schizotypy using a self-reported questionnaire and measured magnetization transfer as a putative microstructural magnetic resonance imaging marker of intracortical myelination in 68 brain regions in 248 healthy young people (14–25 years of age). We used normative adult brain gene expression data and partial least squares analysis to find the weighted gene expression pattern that was most colocated with the cortical map of schizotypy-related magnetization. Results: Magnetization was significantly correlated with schizotypy in the bilateral posterior cingulate cortex and precuneus (and for disorganized schizotypy, also in medial prefrontal cortex; all false discovery rate–corrected ps < .05), which are regions of the default mode network specialized for social and memory functions. The genes most positively weighted on the whole-genome expression map colocated with schizotypy-related magnetization were enriched for genes that were significantly downregulated in two prior case-control histological studies of brain gene expression in schizophrenia. Conversely, the most negatively weighted genes were enriched for genes that were transcriptionally upregulated in schizophrenia. Positively weighted (downregulated) genes were enriched for neuronal, specifically interneuronal, affiliations and coded a network of proteins comprising a few highly interactive "hubs" such as parvalbumin and calmodulin. Conclusions: Microstructural magnetic resonance imaging maps of intracortical magnetization can be linked to both the behavioral traits of schizotypy and prior histological data on dysregulated gene expression in schizophrenia.

Abstract

Alan Turing Institute under the Engineering and Physical Sciences Research Council EP/N510129/1

Abstract

MQ fellowship Grant MQF17_24

Abstract

National Institute for Health Research Cambridge Biomedical Research Centre

Abstract

National Institutes of Health Oxford-Cambridge Scholars' Program

Abstract

Neuroscience in Psychiatry Network (NSPN)

Abstract

Guarantors of Brain

Abstract

National Institute for Health Research Senior Investigator

Abstract

Wellcome Trust to the University of Cambridge and University College London

Additional details

Created:
October 11, 2023
Modified:
December 1, 2023