Published February 16, 2018 | Version v1
Publication

A putative RNA binding protein from Plasmodium vivax apicoplast

Description

Malaria is caused by Apicomplexa protozoans from the Plasmodium genus entering the bloodstream of humans and animals through the bite of the female mosquitoes. The annotation of the Plasmodium vivax genome revealed a putative RNA binding protein (apiRBP) that was predicted to be trafficked into the apicoplast, a plastid organelle unique to Apicomplexa protozoans. Although a 3D structural model of the apiRBP corresponds to a noncanonical RNA recognition motif with an additional C‐terminal α‐helix (α3), preliminary protein production trials were nevertheless unsuccessful. Theoretical solvation analysis of the apiRBP model highlighted an exposed hydrophobic region clustering α3. Hence, we used a C‐terminal GFP‐fused chimera to stabilize the highly insoluble apiRBP and determined its ability to bind U‐rich stretches of RNA. The affinity of apiRBP toward such RNAs is highly dependent on ionic strength, suggesting that the apiRBP–RNA complex is driven by electrostatic interactions. Altogether, apiRBP represents an attractive tool for apicoplast transcriptional studies and for antimalarial drug design.

Abstract

Junta de Andalucía P11-CVI-7216 and BIO-198

Abstract

Universidad de Sevilla VI PPIT-US

Additional details

Created:
March 27, 2023
Modified:
November 30, 2023