Published 2016
| Version v1
Journal article
A Hybrid High-Order method for the Cahn-Hilliard problem in mixed form
Contributors
Others:
- Institut Montpelliérain Alexander Grothendieck (IMAG) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Littoral, Environment: MOdels and Numerics (LEMON) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Hydrosciences Montpellier (HSM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Surface du Verre et Interfaces (SVI) ; Centre National de la Recherche Scientifique (CNRS)
- Saint-Gobain Recherche, contract UM N° 150095
- ANR-15-CE40-0005,HHOMM,Méthodes hybrides d'ordre élevé sur maillages polyédriques(2015)
Description
In this work, we develop a fully implicit Hybrid High-Order algorithm for the Cahn–Hilliard problem in mixed form. The space discretization hinges on local reconstruction operators from hybrid polynomial unknowns at elements and faces. The proposed method has several assets: (i) It supports fairly general meshes possibly containing polygonal elements and nonmatching interfaces;(ii) it allows arbitrary approximation orders; (iii) it has a moderate computational cost thanks to the possibility of locally eliminating element-based unknowns by static condensation. We perform a detailed stability and convergence study, proving optimal convergence rates in energy-like norms. Numerical validation is also provided using some of the most common tests in the literature.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01203733
- URN
- urn:oai:HAL:hal-01203733v2
Origin repository
- Origin repository
- UNICA