Published 2020
| Version v1
Journal article
DTM-based Filtrations
- Others:
- Fujitsu Laboratories Ltd.
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire de Mathématiques d'Orsay (LMO) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014)
Description
Despite strong stability properties, the persistent homology of filtrations classically used in Topological Data Analysis, such as, e.g. the Cech or Vietoris-Rips filtrations, are very sensitive to the presence of outliers in the data from which they are computed. In this paper, we introduce and study a new family of filtrations, the DTM-filtrations, built on top of point clouds in the Euclidean space which are more robust to noise and outliers. The approach adopted in this work relies on the notion of distance-to-measure functions, and extends some previous work on the approximation of such functions.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01919562
- URN
- urn:oai:HAL:hal-01919562v3
- Origin repository
- UNICA