Published July 21, 2023
| Version v1
Journal article
Optical coherent detection through multi-scattering media by wave-mixing cleaning effect in liquid-crystal OASLM
Contributors
Others:
- HOASYS (HOASYS)
- Institut de Physique de Nice (INPHYNI) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut Langevin - Ondes et Images (UMR7587) (IL) ; Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Description
Liquid-crystal (LC) optically addressable spatial light modulators (OASLMs) allow control of the phase and amplitude of optical beams. By performing wave mixing in an OASLM, we show that coherent phase detection can be achieved for light beams passing through highly scattering media, such as foam layers with several cm thicknesses. Thanks to the adaptive response of our OASLM, the phase information on the speckle signal is transferred at the output of the OASLM to the plane wave reference beam, allowing the cleaning of optical distortions and the direct measurement of amplitude phase modulations with a small diameter single photodiode. A good signal-to-noise ratio (SNR) is demonstrated for foam thickness up to 3 cm. These properties, together with the recently demonstrated sub-ms response time of our OASLM, make the method compatible with foreseen applications for imaging in biomedical tissues and turbid media.
Additional details
Identifiers
- URL
- https://hal.science/hal-04286579
- URN
- urn:oai:HAL:hal-04286579v1
Origin repository
- Origin repository
- UNICA