Published February 2002 | Version v1
Report

Pancyclic arcs and connectivity in tournaments

Others:
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
INRIA

Description

A tournament is an orientation of the edges of a complete graph. An arc is pancyclic in a digraph D if it is contained in a cycle of length l, for every $3\leq l\leq |D|$. In [4], Moon showed that every strong tournament contains at least three pancyclics arcs and characterized the tournaments with exactly three pancyclic arcs. All these tournaments are not 2-strong. In this paper, we are interested in the minimum number $p_k(n)$ of pancyclic arcs in a k-strong tournament of order n. We conjecture that (for $k\geq 2$) there exists a constant $\alpha_k>0$ such that $p_k(n)\geq \alpha_kn$. After proving that every 2-strong tournament has a hamiltonian cycle containing at least five pancyclic arcs, we deduce that for $k\geq 2$, $p_k(n)\geq 2k+3$. We then characterize the tournaments having exactly four pancyclic arcs and those having exactly five pancyclic arcs.

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023