Published September 19, 2022 | Version v1
Conference paper

Mineral-catalyzed sugar synthesis under hydrothermal conditions

Description

Introduction: Sugars are important molecules with high biological interest. Found in cometary-like analogs (Meinert et al., 2016), carbonaceous meteorites (Cooper et al., 2001; Furukawa et al., 2019), and likely on early Earth, sugars may have contributed as a source of molecules for the emergence of prebiotic systems on Earth. Hence, it is of prime importance to investigate their formation in conditions relevant to these environments, and particularly in the presence of minerals. For example, sugar formation is achieved through the formose reaction: the dimerization of formaldehyde, forming glycolaldehyde, which then by aldol reactions with another formaldehyde, will form successively higher sugar homologues. A catalyst is usually required for the first step, the formation of glycolaldehyde (typically calcium hydroxide). However, there is a lack of studies exploring the potential of minerals on the classical formose reaction (Gabel and Ponnamperuma, 1967; Haas et al., 2020) and in conditions representative of prebiotic environments. Here, we focus on the formation of sugars from formaldehyde ; the formose reaction in aqueous solution using minerals, simulating conditions in which planetary surfaces could have evolved at the beginning of the Solar System.

Additional details

Created:
November 25, 2023
Modified:
November 25, 2023