Published 2017 | Version v1
Publication

Simulation of argon response and light detection in the DarkSide-50 dual phase TPC

Agnes, P.
Albuquerque, I. F. M.
Alexander, T.
Alton, A. K.
Asner, D. M.
Back, H. O.
Biery, K.
Bocci, V.
Bonfini, G.
Bonivento, W.
Bossa, M.
Bottino, B.
Budano, F.
Bussino, S.
Cadeddu, M.
Cadoni, M.
Calaprice, F.
Canci, N.
Candela, A.
Caravati, M.
Cariello, M.
Carlini, M.
Catalanotti, S.
Cataudella, V.
Cavalcante, P.
Chepurnov, A.
Cicalò, C.
Cocco, A. G.
Covone, G.
D'Angelo, D.
D'Incecco, M.
Davini, S.
De Candia, A.
De Cecco, S.
De Deo, M.
De Filippis, G.
De Vincenzi, M.
Derbin, A. V.
De Rosa, G.
Devoto, A.
Di Eusanio, F.
Di Pietro, G.
Dionisi, C.
Edkins, E.
Empl, A.
Fan, A.
Fiorillo, G.
Fomenko, K.
Franco, D.
Gabriele, F.
Galbiati, C.
Giagu, S.
Giganti, C.
Giovanetti, G. K.
Goretti, A. M.
Granato, F.
Gromov, M.
Guan, M.
Guardincerri, Y.
Hackett, B. R.
Herner, K.
Hughes, D.
Humble, P.
Hungerford, E. V.
Ianni, An.
James, I.
Johnson, T. N.
Keeter, K.
Kendziora, C. L.
Koh, G.
Korablev, D.
Korga, G.
Kubankin, A.
Li, X.
Lissia, M.
Loer, B.
Longo, G.
Ma, Y.
Machado, A. A.
Machulin, I. N.
Mandarano, A.
Mari, S. M.
Maricic, J.
Martoff, C. J.
Meyers, P. D.
Milincic, R.
Monte, A.
Mount, B. J.
Muratova, V. N.
Musico, P.
Napolitano, J.
Agasson, A. Navrer
Oleinik, A.
Orsini, M.
Ortica, F.
Pagani, L.
Pallavicini, M.
Pantic, E.
Pelczar, K.
Pelliccia, N.
Pocar, A.
Pordes, S.
Pugachev, D. A.
Qian, H.
Randle, K.
Razeti, M.
Razeto, A.
Reinhold, B.
Renshaw, A. L.
Rescigno, M.
Riffard, Q.
Romani, A.
Rossi, B.
Rossi, N.
Sablone, D.
Sands, W.
Sanfilippo, S.
Savarese, C.
Schlitzer, B.
Segreto, E.
Semenov, D. A.
Singh, P. N.
Skorokhvatov, M. D.
Smirnov, O.
Sotnikov, A.
Stanford, C.
Suvorov, Y.
Tartaglia, R.
Testera, G.
Tonazzo, A.
Trinchese, P.
Unzhakov, E. V.
Verducci, M.
Vishneva, A.
Vogelaar, B.
Wada, M.
Walker, S.
Wang, H.
Wang, Y.
Watson, A. W.
Westerdale, S.
Wilhelmi, J.
Wojcik, M. M.
Xiang, X.
Xiao, X.
Yang, C.
Ye, Z.
Zhu, C.
Zuzel, G.
Others:
Agnes, P.
Albuquerque, I. F. M.
Alexander, T.
Alton, A. K.
Asner, D. M.
Back, H. O.
Biery, K.
Bocci, V.
Bonfini, G.
Bonivento, W.
Bossa, M.
Bottino, B.
Budano, F.
Bussino, S.
Cadeddu, M.
Cadoni, M.
Calaprice, F.
Canci, N.
Candela, A.
Caravati, M.
Cariello, M.
Carlini, M.
Catalanotti, S.
Cataudella, V.
Cavalcante, P.
Chepurnov, A.
Cicalò, C.
Cocco, A. G.
Covone, G.
D'Angelo, D.
D'Incecco, M.
Davini, S.
De Candia, A.
De Cecco, S.
De Deo, M.
De Filippis, G.
De Vincenzi, M.
Derbin, A. V.
De Rosa, G.
Devoto, A.
Di Eusanio, F.
Di Pietro, G.
Dionisi, C.
Edkins, E.
Empl, A.
Fan, A.
Fiorillo, G.
Fomenko, K.
Franco, D.
Gabriele, F.
Galbiati, C.
Giagu, S.
Giganti, C.
Giovanetti, G. K.
Goretti, A. M.
Granato, F.
Gromov, M.
Guan, M.
Guardincerri, Y.
Hackett, B. R.
Herner, K.
Hughes, D.
Humble, P.
Hungerford, E. V.
Ianni, An.
James, I.
Johnson, T. N.
Keeter, K.
Kendziora, C. L.
Koh, G.
Korablev, D.
Korga, G.
Kubankin, A.
Li, X.
Lissia, M.
Loer, B.
Longo, G.
Ma, Y.
Machado, A. A.
Machulin, I. N.
Mandarano, A.
Mari, S. M.
Maricic, J.
Martoff, C. J.
Meyers, P. D.
Milincic, R.
Monte, A.
Mount, B. J.
Muratova, V. N.
Musico, P.
Napolitano, J.
Agasson, A. Navrer
Oleinik, A.
Orsini, M.
Ortica, F.
Pagani, L.
Pallavicini, M.
Pantic, E.
Pelczar, K.
Pelliccia, N.
Pocar, A.
Pordes, S.
Pugachev, D. A.
Qian, H.
Randle, K.
Razeti, M.
Razeto, A.
Reinhold, B.
Renshaw, A. L.
Rescigno, M.
Riffard, Q.
Romani, A.
Rossi, B.
Rossi, N.
Sablone, D.
Sands, W.
Sanfilippo, S.
Savarese, C.
Schlitzer, B.
Segreto, E.
Semenov, D. A.
Singh, P. N.
Skorokhvatov, M. D.
Smirnov, O.
Sotnikov, A.
Stanford, C.
Suvorov, Y.
Tartaglia, R.
Testera, G.
Tonazzo, A.
Trinchese, P.
Unzhakov, E. V.
Verducci, M.
Vishneva, A.
Vogelaar, B.
Wada, M.
Walker, S.
Wang, H.
Wang, Y.
Watson, A. W.
Westerdale, S.
Wilhelmi, J.
Wojcik, M. M.
Xiang, X.
Xiao, X.
Yang, C.
Ye, Z.
Zhu, C.
Zuzel, G.

Description

A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ∼107, using the pulse shape discrimination technique, and the measurement of the residual39Ar contamination in underground argon, ∼3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.

Additional details

Created:
March 27, 2023
Modified:
November 28, 2023