Published September 19, 2022 | Version v1
Conference paper

Foveated Neural Computation

Others:
Università degli Studi di Siena = University of Siena (UNISI)
Dipartimento di Ingegneria dell'informazione e scienze matematiche [Siena] (DIISM) ; Università degli Studi di Siena = University of Siena (UNISI)
Dipartimento di Ingegneria dell'Informazione [Firenze] (DINFO) ; Università degli Studi di Firenze = University of Florence (UniFI)
Université Côte d'Azur (UCA)
Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Università degli Studi di Firenze = University of Florence (UniFI)

Description

The classic computational scheme of convolutional layers leverages filter banks that are shared over all the spatial coordinates of the input, independently on external information on what is specifically under observation and without any distinctions between what is closer to the observed area and what is peripheral. In this paper we propose to go beyond such a scheme, introducing the notion of Foveated Convolutional Layer (FCL), that formalizes the idea of location-dependent convolutions with foveated processing, i.e., fine-grained processing in a given-focused area and coarser processing in the peripheral regions. We show how the idea of foveated computations can be exploited not only as a filtering mechanism, but also as a mean to speed-up inference with respect to classic convolutional layers, allowing the user to select the appropriate trade-off between level of detail and computational burden. FCLs can be stacked into neural architectures and we evaluate them in several tasks, showing how they efficiently handle the information in the peripheral regions, eventually avoiding the development of misleading biases. When integrated with a model of human attention, FCL-based networks naturally implement a foveated visual system that guides the attention toward the locations of interest, as we experimentally analyze on a stream of visual stimuli.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 27, 2023