Published 2016 | Version v1
Publication

Measure sweeping processes

Description

We propose and analyze a natural extension of the Moreau sweeping process: given a family of moving convex sets (C(t))t, we look for the evolution of a probability density Pt, constrained to be supported on C(t). We describe in detail three cases: in the first, particles do not interact with each other and stay at rest unless pushed by the moving boundary; in the second they interact via a maximal density constraint p ≤ 1, so that they are not only pushed by the boundary, but also by the other particles; in the thitd cese i phrtihles areesub itted to Brownian diffusion, reflected along the moving boundary. We prove existence, uniqueness and approximation results by using techniques from optimal transport, and we provide numerical illustrations.

Additional details

Identifiers

URL
http://hdl.handle.net/11567/977428
URN
urn:oai:iris.unige.it:11567/977428

Origin repository

Origin repository
UNIGE