Published April 7, 2016 | Version v1
Publication

Discovering decision rules from numerical data streams

Description

This paper presents a scalable learning algorithm to classify numerical, low dimensionality, high-cardinality, time-changing data streams. Our approach, named SCALLOP, provides a set of decision rules on demand which improves its simplicity and helpfulness for the user. SCALLOP updates the knowledge model every time a new example is read, adding interesting rules and removing out-of-date rules. As the model is dynamic, it maintains the tendency of data. Experimental results with synthetic data streams show a good performance with respect to running time, accuracy and simplicity of the model.

Additional details

Created:
March 27, 2023
Modified:
November 30, 2023