Published May 22, 2011 | Version v1
Conference paper

Nonnegative 3-way tensor factorization via conjugate gradient with globally optimal stepsize

Others:
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Laboratoire de sondages électromagnétiques de l'environnement terrestre (LSEET) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
IEEE

Description

This paper deals with the minimal polyadic decomposition (also known as canonical decomposition or Parafac) of a 3-way array, assuming each entry is positive. In this case, the low-rank approximation problem becomes well-posed. The suggested approach consists of taking into account the nonnegative nature of the loading matrices directly in the problem parameterization. Then, the three gradient components are derived allowing to efficiently implement the decomposition using classical optimization algorithms. In our case, we focus on the conjugate gradient algorithm, well matched to large problems. The good behaviour of the proposed approach is illustrated through computer simulations in the context of data analysis and compared to other existing approaches.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
December 1, 2023