Automatic granular and spinous epidermal cell identification and analysis on in vivo reflectance confocal microscopy images using cell morphological features
- Others:
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Johnson & Johnson Santé Beauté France
Description
Significance: Reflectance confocal microscopy (RCM) allows for real-time in vivo visualization of the skin at the cellular level. The study of RCM images provides information on the structural properties of the epidermis. These may change in each layer of the epidermis, depending on the subject's age and the presence of certain dermatological conditions. Studying RCM images requires manual identification of cells to derive these properties, which is time consuming and subject to human error, highlighting the need for an automated cell identification method. Aim: We aim to design an automated pipeline for the analysis of the structure of the epidermis from RCM images of the Stratum granulosum and Stratum spinosum. Approach: We identified the region of interest containing the epidermal cells and the individual cells in the segmented tissue area using tubeness filters to highlight membranes. We used prior biological knowledge on cell size to process the resulting detected cells, removing cells that were too small and reapplying the used filters locally on detected regions that were too big to be considered a single cell. The proposed full image analysis pipeline (FIAP) was compared with machine learning-based approaches (cell cutter, different U-Net configurations, and loss functions). Results: All methods were evaluated both on simulated data (four images) and on manually annotated RCM data (seven images). Accuracy was measured using recall and precision metrics. Both accuracy metrics were higher in the proposed FIAP for both real (precision ¼ 0.720 AE 0.068, recall ¼ 0.850 AE 0.11) and synthetic images (precision ¼ 0.835 AE 0.067, recall ¼ 0.925 AE 0.012). The tested machine learning methods failed to identify and segment keratinocytes on RCM images with a satisfactory accuracy. Conclusions: We showed that automatic cell segmentation can be achieved using a pipeline based on membrane detection, with an accuracy that matches expert manual cell identification. To our knowledge, this is the first method based on membrane detection to study healthy skin using RCM images evaluated against manually identified cell positions.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04069124
- URN
- urn:oai:HAL:hal-04069124v1
- Origin repository
- UNICA