Published September 21, 2023
| Version v1
Publication
Minimum gradation in greyscales of graphs
Contributors
Others:
- Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
- Universidad de Sevilla. Departamento de Geometría y Topología
- Universidad de Sevilla. FQM164: Matemática Discreta: Teoría de Grafos y Geometría Computacional
- Universidad de Sevilla. FQM326: Geometría diferencial y Teoría de Lie
- Ministerio de Ciencia e Innovación (MICIN). España
- Junta de Andalucía
Description
In this paper we present the notion of greyscale of a graph as a colouring of its vertices that uses colours from the real interval [0,1]. Any greyscale induces another colouring by assigning to each edge the non-negative difference between the colours of its vertices. These edge colours are ordered in lexicographical decreasing ordering and give rise to a new element of the graph: the gradation vector. We introduce the notion of minimum gradation vector as a new invariant for the graph and give polynomial algorithms to obtain it. These algorithms also output all greyscales that produce the minimum gradation vector. This way we tackle and solve a novel vectorial optimization problem in graphs that may generate more satisfactory solutions than those generated by known scalar optimization approaches.
Additional details
Identifiers
- URL
- https://idus.us.es/handle//11441/149060
- URN
- urn:oai:idus.us.es:11441/149060
Origin repository
- Origin repository
- USE