Published 2011
| Version v1
Journal article
On the Spitzer-Härm regime and non local approximations: modeling, analysis and numerical simulations
- Creators
- Goudon, Thierry
- Parisot, Martin
- Others:
- COmplex Flows For Energy and Environment (COFFEE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- SImulations and Modeling for PArticles and Fluids (SIMPAF) ; Laboratoire Paul Painlevé (LPP) ; Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- This work was supported by the Ministry of Higher Education and Research, Nord-Pas de Calais Regional Council, and FEDER through the "Contrat de Projets Etat Region" 2007-2013.
Description
This paper is devoted to the derivation of the Spitzer-Härm limit from the coupled system of PDEs describing the evolution of charged particles and electromagnetic fields. We identify a relevant asymptotic regime which leads to a nonlinear diffusion equation for the electron temperature. Then, we discuss some intermediate models, which remain of hydrodynamic nature but involve a nonlocal coupling through integral or pseudodifferential operators. In particular, we exhibit important mathematical properties of the so-called Schurtz-Nicolaï model like the well-posedness and the maximum principle. We also design numerical schemes for the nonlocal models and analyze their consistency and stability properties.
Abstract
International audience
Additional details
- URL
- https://inria.hal.science/hal-00905332
- URN
- urn:oai:HAL:hal-00905332v1
- Origin repository
- UNICA