Contribution of multi and hyperspectral imaging to skin pigmentation evaluation
- Creators
- Prigent, Sylvain
- Others:
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Models of spatio-temporal structure for high-resolution image processing (AYIN) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Université Nice Sophia Antipolis
- Xavier Descombes
- Galderma
Description
The main objective of this PhD thesis is to develop a score that measures the skin pigmentation using spectral images. The ultimate goal is to build a more objective and at least as powerful as clinical methods for evaluation of treatment effects acting on the skin hyper-pigmentation. This tool is intended to be used in clinical trials. The work focuses on melasma that is a disease mainly due to hormonal disorders and sunlight exposure. To assess the severity of this disease and its evolution under treatment, we proposed two types of classification. The first one is a binary classification between healthy tissue and pathological tissue. The second one consists in defining different levels of severity for pathological tissues. The first classification concerns high dimensional spaces. An algorithm for dimensionality reduction associated with a classification by support vector machines has been developed. This method comes with a comparison of projection pursuit and source separation, as well as automated methods to estimate the dimension of the arrival space, and the estimation of different groups of spectral bands in the case of projection pursuit. The second classification criterion aims at qualifying a clinical severity criterion of hyperpigmentation. This clinical criterion includes three components: area, contrast and homogeneity. The surface component arises from the classification between healthy and pathological tissues. A methodology for estimating combination of spectral bands taking into account the spectral information and the kinetics of the treatment effect on a clinical study is proposed to obtain a contrast criterion. To get a spatial homogeneity criterion, an approach based on multiscale analysis of Gaussian fields adapted from the methodology of statistical parametric mapping is used between two acquisition dates.
Abstract (French)
L'objectif principal de ce travail de thèse est de développer un score mesurant la pigmentation de la peau à partir d'images spectrales. L'objectif final est de construire un outil plus objectif et au moins aussi performant que les outils cliniques, dans l'évaluation de l'effet des traitements agissant sur l'hyper-pigmentation de la peau. Cet outil a pour vocation à être utilisé dans des essais cliniques. Le travail se focalise sur le mélasma qui est une pathologie pigmentaire symétrique due principalement à des troubles hormonaux et à l'exposition au soleil. Pour évaluer la sévérité de cette pathologie et son évolution sous traitements, deux types de classification sont proposés. Le premier concerne une classification binaire entre tissu sain et tissu pathologique. Le second consiste à définir différents niveaux de sévérité pour les tissus pathologiques. La première classification s'inscrit dans le cadre de la classification dans des espaces de grande dimension. Un outil de réduction de dimension associé à un algorithme de classification par séparateurs à vaste marge a été développé. Cet outil est issu d'une comparaison des techniques de poursuite de projection et de séparation de sources, ainsi que des méthodes d'automatisation pour estimer la dimension de l'espace d'arrivée, et l'estimation des différents groupes de bandes spectrales dans le cas de la poursuite de projection. La seconde classification vise à mesurer un critère clinique de sévérité de l'hyperpigmentation. Ce critère clinique comprend trois composantes : surface, contraste et homogénéïté. La composante de surface découle de la classification entre tissus sains et tissus pathologiques. Une méthodologie d'estimation de combinaison de bandes spectrales tenant conjointement compte de la signature spectrale et de la cinétique de l'effet d'un traitement sur toute une étude clinique est proposée afin d'obtenir un critère de contraste. Pour obtenir un critère d'homogénéïté spatiale, une approche fondée sur l'analyse multi-échelles de champs gaussiens et issue de la méthodologie du "statistical parametric mapping" est employée entre deux dates d'acquisition.
Additional details
- URL
- https://theses.hal.science/tel-00764831
- URN
- urn:oai:HAL:tel-00764831v2
- Origin repository
- UNICA