Published August 1, 2016
| Version v1
Conference paper
Fractional spaces and conservation laws
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Center for Scientific Computation and Mathematical Modeling (CSCAMM)
- COmplex Flows For Energy and Environment (COFFEE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Projet Inphynity SLowDyn
- Klingenberg C.
- Westdickenberg M.
Description
In 1994, Lions, Perthame and Tadmor conjectured the maximal smoothing effect for multidimensional scalar conservation laws in Sobolev spaces. For strictly smooth convex flux and the one-dimensional case we detail the proof of this conjecture in the framework of Sobolev fractional spaces $W^{ s,1}$ , and in fractional $BV$ spaces: $BV^s$. The $BV^s$ smoothing effect is more precise and optimal. It implies the optimal Sobolev smoothing effect in $W^{ s,1}$ and also in $W^{ s,p}$ with the optimal $ p = 1/s$. Moreover, the proof expounded does not use the Lax-Oleinik formula but a generalized one-sided Oleinik condition.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01407099
- URN
- urn:oai:HAL:hal-01407099v1
- Origin repository
- UNICA