Published April 27, 2005 | Version v1
Journal article

Numerical Study of Dynamo Action at Low Magnetic Prandtl Numbers

Description

We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers PM. The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from PM=1 down to PM=10^-2, (ii) the critical magnetic Reynolds number increases sharply with P_M^-1 as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as PM is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.

Abstract

4 pages

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 28, 2023