Published 2024
| Version v1
Journal article
Poly(ethylene 2,5-furandicarboxylate) pole figures to determine the microstructural scheme upon uniaxial stretching: Link between orientation and crystallisation
Contributors
Others:
- Centre de Mise en Forme des Matériaux (CEMEF) ; Mines Paris - PSL (École nationale supérieure des mines de Paris) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Chimie de Nice (ICN) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEME)
- Projet ADEME France
Description
The emergent biobased polymer poly (ethylene 2,5-furandicarboxylate), PEF, has been studied through an innovative approach based on pole figures and orientation factor calculation. PEF uniaxial stretching was performed with different mechanical conditions (different equivalent strain rates), up to several levels of strain and while considering different post-stretching cooling conditions (interrupted, unloaded and ruptured samples). Samples were stretched and interrupted before and after the Natural Draw Ratio (NDR), the deformation for which the material starts strain-hardening. When PEF strain-hardens, it reveals both an increase of the crystalline orientation and crystallinity ratio with the deformation imposed. Unloading the material at temperature tends to decrease partially crystalline orientation, especially regarding the aliphatic part of the chains. Moreover, stretching PEF up to high strains, superior to the NDR, leads to crystal fragmentation. After all, all experimental results were compared to a texture model. It appears that a texture can be developed upon stretching that is close to a fibre texture, as the furan cycles tend to be parallel to the specimen plane.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04869841
- URN
- urn:oai:HAL:hal-04869841v1
Origin repository
- Origin repository
- UNICA