What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
- Others:
- Universidad de Sevilla. Departamento de Filosofía y Lógica y Filosofía de la Ciencia
- Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
- Junta de Andalucía
- Ministerio de Ciencia, Innovación y Universidades (MICINN). España
- Universidad de Jaén
- Fundación Alicia Koplowitz
- Unión Europea. Horizonte 2020
- Swiss National Science Foundation
- Fonds de la Recherche Scientifique (FNRS). Bélgica
- National Natural Science Foundation of China
Description
The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or 'information structure'), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.
Abstract
Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía P20_00592
Abstract
Ministerio de Ciencia, Innovación y Universidades PGC2018-096540-B-I00
Abstract
Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía US-1254251
Abstract
NextGenerationEU Ayudas Margarita Salas, MSALAS-2022-19827
Abstract
Universidad de Jaén PAIUJA-EI_CTS02_2021
Abstract
Fundación Alicia Koplowitz OTR08262-2021
Abstract
Ministerio de Ciencia, Innovación y Universidades PID2019-105772GB-I00 /AEI/10.13039/501100011033
Abstract
Horizonte 2020 Marie Sklodowska-Curie grant 896354
Abstract
Swiss National Science Foundation Sinergia grant no. 170873
Abstract
Fonds de la Recherche Scientifique (FNRS)
Abstract
European Union's Horizon 2020 Human Brain Project SGA3
Abstract
European Union's Horizon 2020 Luminous project H2020-FETOPEN-2014-2015-RIA
Abstract
European Union's FP7 Programme FP7-HEALTH-602150
Abstract
National Natural Science Foundation of China Joint Research Project 81471100
Abstract
H2020 Marie Skłodowska-Curie Actions EU-2020-MSCA-RISE-778234
Additional details
- URL
- https://idus.us.es/handle//11441/148394
- URN
- urn:oai:idus.us.es:11441/148394
- Origin repository
- USE