Published May 13, 2013
| Version v1
Conference paper
A machine-to-machine architecture to merge semantic sensor measurements
- Others:
- Eurecom [Sophia Antipolis]
- Mobile Communication ; Eurecom [Sophia Antipolis]
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe RAINBOW ; Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
The emerging eld Machine-to-Machine (M2M) enables machines to communicate with each other without human intervention. Existing semantic sensor networks are domainspeci c and add semantics to the context. We design a Machine-to-Machine (M2M) architecture to merge heterogeneous sensor networks and we propose to add semantics to the measured data rather than to the context. This architecture enables to: (1) get sensor measurements, (2) enrich sensor measurements with semantic web technologies, domain ontologies and the Link Open Data, and (3) reason on these semantic measurements with semantic tools, machine learning algorithms and recommender systems to provide promising applications.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-00927389
- URN
- urn:oai:HAL:hal-00927389v1
- Origin repository
- UNICA