Multidimensional Harmonic Retrieval Based on Vandermonde Tensor Train
- Others:
- Laboratoire des signaux et systèmes (L2S) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Wireless Telecom Research Group [Fortaleza] (GTEL) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Multidimensional Harmonic Retrieval (MHR) is at the heart of important signal-based applications. The exploitation of the large number of available measurement diversities for data fusion increases inexorably the tensor order/dimensionality. The need to mitigate the "curse of dimensionality" in this case is crucial. To efficiently cope with this massive data processing problem, a new scheme called JIRAFE (Joint dImensionality Reduction And Factors rEtrieval) is proposed to estimate the parameters of interest in the MHR problem, namely, the M P angular-frequencies, of the associated P-order rank-M Canonical Polyadic Decomposition (CPD). Our methodology consists of two main steps. The first one breaks the high-order measurement tensor into a collection of graph-connected 3-order tensors, each following a 3-order CPD of rank-M , also called Tensor Train (TT)-cores. This result is based on a model property equivalence between the CPD and the Tensor Train decomposition (TTD) with coupled TT-cores. The second step makes use of a Vandermonde based rectified Alternating Least Squares (RecALS) algorithm to estimate the factors of interest, by enforcing the desired matrix structure. We show that our methodology has several advantages in terms of flexibility, robustness to noise, computational cost and automatic pairing of the parameters of interest with respect to the tensor order.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02123112
- URN
- urn:oai:HAL:hal-02123112v1
- Origin repository
- UNICA