Published 2015
| Version v1
Journal article
Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors
Creators
- Aasi, J
- Bonnand, R.
- Cagnoli, G.
- Degallaix, J.
- Flaminio, R.
- Granata, M.
- Michel, Christine
- Morgado, N.
- Pinard, L.
- Saracco, E.
- Sassolas, B.
- Straniero, N.
- Accadia, T.
- Buskulic, D.
- Gouaty, R.
- Letendre, N.
- Marion, F.
- Masserot, A.
- Mours, B.
- Rolland, L.
- Verkindt, D.
- Yvert, M.
- Bizouard, M.-A.
- Brisson, V.
- Cavalier, F.
- Davier, M.
- Franco, S.
- Hello, P.
- Leroy, N.
- Robinet, F.
- Bondu, François
Contributors
Others:
- Laboratoire des matériaux avancés (LMA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Annecy de Physique des Particules (LAPP) ; Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de l'Accélérateur Linéaire (LAL) ; Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Physique de Rennes (IPR) ; Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Royal Society
- Hungarian Scientific Research Fund
- Scottish Funding Council
- Council of Scientific and Industrial Research of India
- Australian Research Council
- National Aeronautics and Space Administration
- Italian Istituto Nazionale di Fisica Nucleare
- Research Corporation for Science Advancement
- National Science Foundation
- Leverhulme Trust
- David and Lucile Packard Foundation
- Max-Planck-Society
- Scottish Universities Physics Alliance
- State of Niedersachsen/Germany
- Commonwealth of Australia
- Conselleria d'Economia
- Hisenda i Innovació
- Polish Ministry of Science and Higher Education
- FOCUS Programme of Foundation for Polish Science
- Lyon Institute of Origins
- National Science and Engineering Research Council Canada
- National Research Foundation of Korea
- Netherlands Organisation for Scientific Research
- Alfred P. Sloan Foundation
- Carnegie Trust for the Universities of Scotland
- Spanish Ministerio de Economía y Competitividad
- Science and Technology Facilities Council
- Ministry of Economic Development and Innovation
- LIGO
- VIRGO
Description
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of \Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of ∼180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
Abstract
21 pages, 10 figures, 5 tables, see paper for full list of authorsAbstract
International audienceAdditional details
Identifiers
- URL
- https://hal.in2p3.fr/in2p3-01077175
- URN
- urn:oai:HAL:in2p3-01077175v1
Origin repository
- Origin repository
- UNICA