Published November 28, 2023
| Version v1
Conference paper
Temporal Hyperbolic Graphs as Null Models for Brain Dynamics
Contributors
Others:
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Modélisation des résaux dynamiques cérébraux (CRONOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Université Côte d'Azur (UCA)
- ANR-17-EURE-0004,UCA DS4H,UCA Systèmes Numériques pour l'Homme(2017)
Description
Null models are crucial for determining the degree of significance when testing hypotheses about brain dynamics modeled as a temporal complex network [7, 12]. The comparison between the hypothesis being tested on empirical data and on the null model enables us to assess the extent to which an apparently remarkable feature of the former can be attributed to randomness. In this work, we consider networks generated from resting-state functional magnetic resonance imaging (fMRI) signals from the Human Connectome Project [1] using standard processing techniques [9]. The network nodes correspond to brain regions while the edges represent the presence of a correlation greater than a certain value betweenthe signals of two regions. Over time, edges may appear and disappear, indicating that the associated correlation may jump above and below a certain value. While null models for static networks have been studied extensively [12, 4, 2, 6], there is a lack of attention to temporal networks. Therefore, our investigation focuses on the study of temporal null models. In doing so, we focus on the ability of the null models to reproduce the temporal small-worldness present in the empirical data, a property associated with the efficient exchange of information at local and global scales over time.
Additional details
Identifiers
- URL
- https://hal.science/hal-04343066
- URN
- urn:oai:HAL:hal-04343066v1
Origin repository
- Origin repository
- UNICA