Published July 20, 2016
| Version v1
Conference paper
Compact Formulae in Sparse Elimination
Creators
Contributors
Others:
- AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA)
- National and Kapodistrian University of Athens (NKUA)
Description
It has by now become a standard approach to use the theory of sparse (or toric) elimination, based on the Newton polytope of a polynomial, in order to reveal and exploit the structure of algebraic systems. This talk surveys compact formulae, including older and recent results, in sparse elimination. We start with root bounds and juxtapose two recent formulae: a generating function of the m-Bézout bound and a closed-form expression for the mixed volume by means of a matrix permanent. For the sparse resultant, a bevy of results have established determinantal or rational formulae for a large class of systems, starting with Macaulay. The discriminant is closely related to the resultant but admits no compact formula except for very simple cases. We offer a new determinantal formula for the discriminant of a sparse multilinear system arising in computing Nash equilibria. We introduce an alternative notion of compact formula, namely the Newton polytope of the unknown polynomial. It is possible to compute it efficiently for sparse resultants, discriminants, as well as the implicit equation of a parameterized variety. This leads us to consider implicit matrix representations of geometric objects.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01401132
- URN
- urn:oai:HAL:hal-01401132v1
Origin repository
- Origin repository
- UNICA