Neuromorphic Event-Based Spatio-temporal Attention using Adaptive Mechanisms
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Université Côte d'Azur (UCA)
- Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Department of Information Technology and Electrical Engineering [Zürich] (D-ITET) ; Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
- Center for Project-Based Learning (PBL) ; Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
- ANR-19-CHR3-0008,APROVIS3D,Traitement analogique de capteur visuels bio-inspirés pour la reconstruction 3D(2019)
Description
Contrary to RGB cameras, Dynamic Vision Sensor (DVS) output visual data in the form of an asynchronous events stream by recording pixel-wise luminance changes at microsecond resolution. While conventional computer vision approaches utilise frame-based input data, thus failing to take full advantage of the high temporal resolution, novel approaches use spiking neural networks Spiking Neural Networks (SNNs) which are more compatible to handle event-based data since these bioinspired neural models intrinsically encode information in a sparse manner using activation spikes trains. This paper presents an attentional mechanism which detects regions with higher event density by using inherent SNN dynamics combined with online weight and threshold adaptation. We implemented the network directly on Intel's research neuromorphic chip Loihi and evaluate our proposed method on the open DVS128 Gesture Dataset. Our system is able to process 1 ms of event-data in 6 ms and reject more than 50% of incoming unwanted events occurring only 20 ms after activity onset.
Abstract
This work was supported by the European Union's ERA-NET CHIST-ERA 2018 research and innovation programme under grant agreement ANR-19-CHR3-0008.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-03760704
- URN
- urn:oai:HAL:hal-03760704v1
- Origin repository
- UNICA