Stability analysis of a bacterial growth model through computer algebra
- Others:
- Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Polynomial Systems (PolSys) ; LIP6 ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Mathematics for Control, Transport and Applications (McTAO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Université Côte d'Azur (UCA)
- Biological control of artificial ecosystems (BIOCORE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'océanographie de Villefranche (LOV) ; Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
- Modélisation et commande de systèmes biologiques et écologiques (MACBES) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de pharmacologie moléculaire et cellulaire (IPMC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
- ANR-11-LABX-0028,SIGNALIFE,Réseau d'Innovation sur les Voies de Signalisation en Sciences de la Vie(2011)
- ANR-17-CE40-0024,Maximic,Contrôle optimal de cellules microbiennes - stratégies naturelles et synthétiques(2017)
Description
We describe microbial growth and production of value-added chemical compounds in a continuous bioreactor through a dynamical system and we study the local stability of the equilibrium of interest by means of the classical Routh-Hurwitz criterion. The mathematical model considers various biological and structural parameters related to the bioprocess (concentration of substrate inflow, constants of the microchemical reactions, steady-state mass fractions of intracellular proteins, etc.) and thus, the stability condition is given in terms of these parameters. This boils down to deciding the consistency of a system of polynomial inequalities over the reals, which is challenging to solve from an analytical perspective, and out of reach even for traditional computational software designed to solve such problems. We show how to adapt classical techniques for solving polynomial systems to cope with this problem within a few minutes by leveraging its structural properties, thus completing the stability analysis of our model. The paper is accompanied by a Maple worksheet available online.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-03671432
- URN
- urn:oai:HAL:hal-03671432v3
- Origin repository
- UNICA