k-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth
- Others:
- Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA) ; Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Networks, Graphs and Algorithms (GANG) ; Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA) ; Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Institute of Applied Mathematics, AAMS, CAS
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Faculty of Applied Mathematics [Krakow] ; AGH University of Science and Technology [Krakow, PL] (AGH UST)
- Facultad de Ingeniería y Ciencias [Santiago] ; Universidad Adolfo Ibáñez [Santiago]
- ANR-09-BLAN-0159,AGAPE,Algorithmes de graphes parametres et exacts(2009)
- ANR-11-BS02-0014,DISPLEXITY,Calculabilité et complexité en distribué(2011)
- European Project: 258307,EC:FP7:ICT,FP7-ICT-2009-5,EULER(2010)
Description
Cops and robber games, introduced by Winkler and Nowakowski [41] and independently defined by Quilliot [43], concern a team of cops that must capture a robber moving in a graph. We consider the class of k-chordal graphs, i.e., graphs with no induced (chordless) cycle of length greater than k, k ≥ 3. We prove that k − 1 cops are always sufficient to capture a robber in k-chordal graphs. This leads us to our main result, a new structural decomposition for a graph class including k-chordal graphs. We present a polynomial-time algorithm that, given a graph G and k ≥ 3, either returns an induced cycle larger than k in G, or computes a tree-decomposition of G, each bag of which contains a dominating path with at most k − 1 vertices. This allows us to prove that any k-chordal graph with maximum degree ∆ has treewidth at most (k −1)(∆ −1) +2, improving the O(∆ (∆ −1) k−3) bound of Bodlaender and Thilikos (1997). Moreover, any graph admitting such a tree-decomposition has small hyperbolicity. As an application, for any n-vertex graph admitting such a tree-decomposition, we propose a compact routing scheme using routing tables, addresses and headers of size O(k log ∆ + log n) bits and achieving an additive stretch of O(k log ∆). As far as we know, this is the first routing scheme with O(k log ∆ + log n)-routing tables and small additive stretch for k-chordal graphs.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01163494
- URN
- urn:oai:HAL:hal-01163494v1
- Origin repository
- UNICA