Rigorous modeling of light absorption in nanostructured materials using a parallel high order finite element time-domain technique
- Others:
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut für Energie- und Klimaforschung - Photovoltaik (IEK-5) ; Forschungszentrum Jülich GmbH | Centre de recherche de Juliers ; Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association
Description
The numerical modeling of light interaction with nanostructured materials is at the heart of many computational photonics studies. A typical example of interest to the present work is the simulation of light trapping in complex photovoltaic devices. This can be a challenging task when the underlying material layers are textured in a very general way. Very often, such studies rely on the Finite Difference Time-Domain (FDTD) method. The FDTD method is a widely used approach for solving the system of time-domain Maxwell equations in the presence of heterogenous media and complex three-dimensional structures. In the classical formulation of the this method, the whole computational domain is discretized using a uniform structured (Cartesian) grid. In this work, we consider an alternative approach by adapting and exploiting a particular finite element method, which is able to deal with topography conforming geometrical models based on non-uniform discretization meshes. The underlying modeling method is known as the Discontinuous Galerkin Time-Domain (DGTD) method. It is a discontinuous finite element type that relies on a high order interpolation of the electromagnetic field components within each cell of an unstructured tetrahedral mesh.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01962363
- URN
- urn:oai:HAL:hal-01962363v1
- Origin repository
- UNICA