Published 2009
| Version v1
Journal article
Secant varieties to osculating varieties of Veronese embeddings of P^n
- Others:
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Dipartimento di Ingegneria della produzione, termoenergetica e modelli matematici (DIPTEM) ; Università degli studi di Genova = University of Genoa (UniGe)
- Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
- European Project: 252367,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,DECONSTRUCT(2010)
Description
A well known theorem by Alexander-Hirschowitz states that all the higher secant varieties of $V_{n,d}$ (the $d$-uple embedding of $\PP n$) have the expected dimension, with few known exceptions. We study here the same problem for $T_{n,d}$, the tangential variety to $V_{n,d}$, and prove a conjecture, which is the analogous of Alexander-Hirschowitz theorem, for $n\leq 9$. Moreover. we prove that it holds for any $n,d$ if it holds for $d=3$. Then we generalize to the case of $O_{k,n,d}$, the $k$-osculating variety to $V_{n,d}$, proving, for $n=2$, a conjecture that relates the defectivity of $\sigma_s(O_{k,n,d})$ to the Hilbert function of certain sets of fat points in $\PP n$.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-00645970
- URN
- urn:oai:HAL:hal-00645970v1
- Origin repository
- UNICA